Collaborative software

From Wikipedia, the free encyclopedia

  (Redirected from Groupware)

Jump to: navigation, search
	



	This article does not cite any references or sources.
Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. (June 2008)


Collaborative software (also referred to as groupware or workgroup support systems) is software designed to help people involved in a common task achieve their goals. Collaborative software is the basis for computer supported cooperative work.

Such software systems as email, calendaring, text chat, wiki belong in this category. It has been suggested that Metcalfe's law — the more people who use something, the more valuable it becomes — applies to such software.

The more general term social software applies to systems used outside the workplace, for example, online dating services and social networks like Friendster and Facebook. The study of computer-supported collaboration includes the study of this software and social phenomena associated with it.

	· 


[image: image1.png]


[edit] Overview
Collaboration, with respect to information technology, seems to have several definitions. Some are defensible but others are so broad they lose any meaningful application. Understanding the differences in human interactions is necessary to ensure the appropriate technologies are employed to meet interaction needs.

There are three primary ways in which humans interact: conversations, transactions, and collaborations[citation needed].

Conversational interaction is an exchange of information between two or more participants where the primary purpose of the interaction is discovery or relationship building. There is no central entity around which the interaction revolves but is a free exchange of information with no defined constraints. Communication technology such as telephones, instant messaging, and e-mail are generally sufficient for conversational interactions.

Transactional interaction involves the exchange of transaction entities where a major function of the transaction entity is to alter the relationship between participants. The transaction entity is in a relatively stable form and constrains or defines the new relationship. One participant exchanges money for goods and becomes a customer. Transactional interactions are most effectively handled by transactional systems that manage state and commit records for persistent storage.

In collaborative interactions the main function of the participants' relationship is to alter a collaboration entity (i.e., the converse of transactional). The collaboration entity is in a relatively unstable form. Examples include the development of an idea, the creation of a design, the achievement of a shared goal. Therefore, real collaboration technologies deliver the functionality for many participants to augment a common deliverable. Record or document management, threaded discussions, audit history, and other mechanisms designed to capture the efforts of many into a managed content environment are typical of collaboration technologies.
Collaboration in Education- two or more co-equal individuals voluntarily bring their knowledge and experiences together by interacting toward a common goal in the best interest of students' needs for the betterment of their educational success.

An emerging category of computer software, a collaboration platform is a unified electronic platform that supports synchronous and asynchronous communication through a variety of devices and channels.

An extension of groupware is collaborative media, software that allows several concurrent users to create and manage information in a website. Collaborative media models include wiki (Comparison of wiki software) and Slashdot models. Some sites with publicly accessible content based on collaborative software are: WikiWikiWeb, Wikipedia and Everything2. By method used we can divide them into:

· Web-based collaborative tools 

· Software collaborative tools 

By area served we can divide them into:

· Knowledge management tools 

· Knowledge creation tools 

· Information sharing tools 

· Collaborative project management tools 

[edit] The Three levels of collaboration
Groupware can be divided into three categories depending on the level of collaboration—communication tools, conferencing tools and collaborative management (Co-ordination) tools.

Communication can be thought of as unstructured interchange of information. A phone call or an IM Chat discussion are examples of this. Conferencing (or collaboration level, as it is called in the academic papers that discuss these levels) refers to interactive work toward a shared goal. Brainstorming or voting are examples of this. Co-ordination refers to complex interdependent work toward a shared goal. A good metaphor for understanding this is to think about a sports team; everyone has to contribute the right play at the right time as well as adjust their play to the unfolding situation - but everyone is doing something different - in order for the team to win. That is complex interdependent work toward a shared goal: co-ordination.

1. Electronic communication tools
Electronic communication tools send messages, files, data, or documents between people and hence facilitate the sharing of information. Examples include:

· synchronous conferencing 

· e-mail 

· faxing 

· voice mail 

· Wikis 

· Web publishing 

· revision control 

2. Electronic conferencing tools
Electronic conferencing tools facilitate the sharing of information, but in a more interactive way. Examples include:

· Internet forums (also known as message boards or discussion boards) — a virtual discussion platform to facilitate and manage online text messages 

· Online chat — a virtual discussion platform to facilitate and manage real-time text messages 

· Instant Messaging 

· Telephony — telephones allow users to interact 

· Videoconferencing — networked PCs share video and audio signals 

· Data conferencing — networked PCs share a common whiteboard that each user can modify 

· Application sharing — users can access a shared document or application from their respective computers simultaneously in real time 

· Electronic meeting systems (EMS) — originally these were described as "electronic meeting systems," and they were built into meeting rooms. These special purpose rooms usually contained video projectors interlinked with numerous PCs; however, electronic meeting systems have evolved into web-based, any time, any place systems that will accommodate "distributed" meeting participants who may be dispersed in several locations. 

3. Collaborative management tools
Collaborative management tools facilitate and manage group activities. Examples include:

· electronic calendars (also called time management software) — schedule events and automatically notify and remind group members 

· project management systems — schedule, track, and chart the steps in a project as it is being completed 

· workflow systems — collaborative management of tasks and documents within a knowledge-based business process 

· knowledge management systems — collect, organize, manage, and share various forms of information 

· prediction markets — let a group of people predict together the outcome of future events 

· extranet systems (sometimes also known as 'project extranets') — collect, organize, manage and share information associated with the delivery of a project (eg: the construction of a building) 

· social software systems — organize social relations of groups 

· online spreadsheets — collaborate and share structured data and information 

[edit] Implementation
The biggest hurdle in implementing groupware is convincing people to use it. Training is required to make people comfortable using it, and if people don't feel comfortable with the software, they won't use it. Employees should be given incentives to contribute: the rewards could be either financial or psychological.

In many cases collaboration is at odds with the company's corporate culture so implementation will be disruptive. Shifting a corporate culture from being competitive to being cooperative is no small undertaking. It will require changes at all levels of the organization, including the CEO.

One of the biggest hurdles is the typical large enterprise desire to standardise knowledge practice across that enterprise and to implement tools and processes which support that aim. Much greater value and quicker implementation can be achieved by avoidance of the "one size fits all" meme. Driving people to adopt the same active role (for example: contribution measured by number of uploads) only produces the behaviour driven by the metric - "the game exists of the rules by which it is played". Cultivate the practice of collaboration where it flourishes of its own volition to gain the quickest return.

[edit] Voting methods
Voting has many uses in collaboration software. Condorcet voting offers input from multiple experts or perspectives and may reduce intransitivity problems in decision making. In recommendation systems, rating or voting on many items can be used to formulate profiles for highly successful recommendations; and in document collaboration, such as Wikipedia, voting methods help to guide the creation of new pages.

Use of voting to order lists of sections such as this one remains largely unexplored. This also pertains to collective intelligence.

Computer-supported collaboration
Scope of the field
[edit] Focused on output
The subfield computer-mediated communication deals specifically with how humans use "computers" (or digital media) to form, support and maintain relationships with others (social uses), regulate information flow (instructional uses), and make decisions (including major financial and political ones). It does not focus on common work products or other "collaboration" but rather on "meeting" itself, and on trust. By contrast CSC is focused on the output not the character or emotional consequences of meetings or relationships. The difference between "communication" and "collaboration".
[edit] Focused on contracts and rendezvous
Unlike communication research which focuses on trust, computer science which focuses on truth and logic, CSC focuses on cooperation and collaboration and decision making theory, which are more concerned with rendezvous and contract. For instance, auctions and market systems, which rely on bid and ask relationships, are studied as part of CSC not usually as part of communication.

The term CSC emerged in the 1990s to replace the terms workgroup computing (which emphasizes technology over the work being supported and seems to restrict inquiry to small organizational units) or groupware (which became a commercial buzzword and was used to describe many badly designed systems[citation needed]) and computer supported cooperative work (the name of a conference) seems only to address research into experimental systems and the nature of workplaces and organizations doing "work" as opposed to play or war).

[edit] Collaboration is not software
Two different types of software are sometimes differentiated

· social software which produces social ties as its primary output, e.g. a social network service 

· collaborative software which produces a collaborative deliverable, e.g. a political wiki producing a platform 

Base technologies like netnews, email, chat and wiki could be described as either "social" or "collaborative". Those who say "social" seem to focus on so-called "virtual community" while those who say "collaborative" seem to be more concerned with content management and the actual output. While software may be designed to achieve closer social ties or specific deliverables, it is hard to support collaboration without also enabling relationships to form, and hard to support a social interaction without some kind of shared co-authored works.

[edit] May include games
Accordingly, the differentiation between social and collaborative software may also be stated as that between "play" and "work". Some theorists hold that a play ethic should apply, and that work must become more game-like or play-like in order to make using computers a more comfortable experience. The study of MUDs and MMRPGs in the 1980s and 1990s led many to this conclusion which is now not controversial.

True multi-player computer games can be considered a simple form of collaboration, but only a few theorists include this as part of CSC.

[edit] Not just about "computing"
	


	This section is written like a personal reflection or essay and may require cleanup.
Please help improve it by rewriting it in an encyclopedic style. (December 2007)


The term social computing is used mostly at IBM to describe the field, in an attempt to invoke existing social conventions or contexts as opposed to technological attributes: the use of e-mail for maintaining social relationships, instant messaging for daily microcoordination at one's workplace, or weblogs as a community building tool. Most researchers argue that these are all forms of collaboration not forms of "computing", making this variant term an oxymoron: whatever is "social" about software it is not the "computing" aspect. The term has not caught on much beyond IBM.

However, the relatively new areas of evolutionary computing, massively-parallel algorithms, and even "artificial life" explore the solution of problems by the evolving interaction of large numbers of small actors, or agents, or decision-makers who interact in a largely unconstrained fashion. The "side-effect" of the interaction may be a solution of interest, such as a new sorting algorithm; or there may be a permanent residual of the interaction, such as the setting of weights in a neural network that has now been "tuned" or "trained" to repeatedly solve a specific problem, such as making a decision about granting credit to a person, or distinguishing a diseased plant from a healthy one. Connectionism is a study of systems in which the learning is stored in the linkages, or connections, not in what is normally thought of as content.

This larger definition of "computing", in which not just the data, or the metadata, or the context of the data, but the computer itself is being "processed" makes the term "social computing" have a whole different meaning. The repeated use of the "blogosphere" to process daily news has a "side-effect" of building up linkage maps, trusted sources, RSS aggregator feeds, etc., so that the overall system is, in some sense, learning how to do something better, more rapidly, and more easily.

In control systems theory, it has been shown that closed-loop feedback systems are vastly more robust than open-loop system. The blogosphere has been criticized for having "echos" or repeatedly cycling certain ideas, but the upside is that there are simultaneous closed-loop feedback paths across a wide spectrum of distance and time-constants. These issues of computability and algorithm-order are classic computer-science issues and, in that sense, social computing is again a legitimate "computing" subject, even if it involves flexible collaboration as part of the "hardware". An analogy might be to imagine a "computer" built entirely of field-programmable gate-arrays, where not just the data and the program itself can be modified in flight (as in LISP, where programs and data are indistinguishable), but the hardware and logic and rules of operation also can be modified real-time during a "computation."

If the collaboration is over a large distance and many time-zones, the system will probably encounter significant differences in context between the components, resulting in a whole new set of design and support problems and behaviors, especially misunderstanding of what is taken as implicit or obvious by different collaborators, and therefore not explicitly stated. Such differences may be cultural, geographic, hierarchical, etc. For example, when Hurricane Katrina hit the US in Fall, 2005, there were substantial collaboration and communication difficulties between Federal, State, and local officials. A significant portion of those difficulties were classic issues that very frequently result from attempts to collaborate over a distance, and from people at one level in an organization trying to collaborate with people at an entirely different level of an organization, with each group having different meanings to what "the problem" is that is being addressed and what time-scale is relevant. Computer-supported collaboration research includes academic research into how to minimize, or at least recognize that class of problem in collaboration and take it into account. Similar problems may occur if a conversation or collaboration occurs when it is a work day at one site or in one country, and already a week-end or holiday in another site, and the parties have different levels of stress and focus. These problems are analogies to "flame wars", the abrupt hostility that has been observed to occur when e-mail is used for a conversation, when the parties are no longer getting direct feedback from watching each other's body language.

A final difference between computer-supported collaboration and classic "computing" is that a computer typically remains a closed system, focusing only on what is already "inside the box", and only dealing with it in an abstract or mental fashion. Collaboration that occurs over a significant period of space and time shares properties of "active vision", where the actions possible are more than just analyzing an incoming TV image of an object of interest, but include walking over to the object, picking it up, turning it over, smashing it open, etc. The collaborating "units" are human beings, typically, who remain partly involved in the collaboration, and partly both sensing and actively changing the world around them. A collaborative discussion of baking cookies could include a period in which participants left the room to actually bake such cookies and try them out. A collaborative discussion of politics could include actually voting and changing the political landscape. This inclusion of both active sensors and active "effectors" is again a difference from "computing" that, at a minimum, makes this field at least as complex as "robotics".

Also, as stated earlier, generally a computer is unaltered by the program it is running or the data it is processing; but a collaboration of people and groups is typically substantially and permanently altered by the nature of problems it works on, the enjoyment or frustration with the working process, and the outcome of the work. This lasting residual "side-effect" or "effect" of one "cycle" of the collaboration then may alter the way in which the collaboration tool is use for the next "cycle", as people learn how to use this new method, so short-term, single-session or single-problem studies of collaboration tools may be very misleading as to what the longer-term outcomes may be. Imagine that your desktop computer, after a while, decided it didn't really like to do word-processing any more and preferred to work on addition, and that every time you tried to write e-mail the computer stopped mid-course to become obsessed with doing word-counts. Analogous behaviors in CSC, as with "game-theory", make studying almost any system or design problem frustratingly complicated: either the problems involved seem to be "toy" problems that are doable but unrealistically simple, or the problems become so complex that analysis is impossible.

A "computer" doesn't generally care whether the answer to a problem is "5" or "25", "yes" or "no," but humans involved in a group decision-making process may care very much about the outcome, and the various answers can have winners and losers with potentially very high stakes. At a minimum, this introduces substantial bias into the analysis of any data, as people will tend to selectively see facts that support the conclusions they personally prefer. In a collaboration within a single hospital between multiple clinicians, mediated by an "electronic medical record", there may actually be a substantial amount of dispute and negotiation going on among, say, a group focusing on treating diabetes and another group focusing on treating congestive heart failure. The "collaboration" may actually be much more of a "competition" to frame and define the problem in terms that result in favorable outcomes. Again, this makes CSC design work far more complicated than simply trying to get a group of sensors or computers to share data and work together correctly. In fact, in some cases, participants may have a strong vested interest in the status quo and prefer as an outcome that the "problem" not be solved. A successful CSC system, in their minds, would be one that prevented the solution of the problem supposedly being addressed collaboratively, perhaps while giving a misleading appearance of cooperative effort. This factor complicates research into whether a CSC system is well-designed or not.

For example, in some countries national political elections could be viewed, abstractly, as heavily technology-mediated (and "computer supported") processes, including information distribution, discussion, debate, and an outcome resolution process - yet there may not be a unanimous opinion as to whether this process "works" or "is broken." It is difficult to improve or redesign a system if people can't even agree on whether the system works now or not. The implications of this is that CSC systems are inextricably embedded in social contexts and have to simultaneously address a specific problem, plus the issue of whether collaboration this way increases the ability to address future problems, plus the issue of what really defines which problems need to be addressed in the first place and the relative priority of those problems.

And, not only is there difference and potential competition between parties across organizational and cultural and geographic dimensions -- opinions on all those subjects may differ, and generally will differ, even within any given organization at different hierarchical levels. What works for workers may not work for management. What works for middle-management may not work for upper-management. What works for management may not work for the stockholders. What works for the company may not work for the country. A CSC system has to handle not just "content processing" but also "context processing" in that sense, sorting out the different nested and overlapping value-laden reference frames as well as the data and "the explicitly identified problem" within those reference frames. Part of this is a very abstract technical problem, faced by researchers in distributed artificial intelligence, in getting, say, 20 different surveillance robotic vehicles to talk to each other and compare notes - which is in itself a hard problem. Add to that complexity a new factor that, say, each of the robots has a hidden agenda and is not being totally honest about what it shares.

If the preceding discussion gives the impression that CSC problems are extraordinarily hard to solve, that's correct. In fact, they have been described as "wicked" problems, not only because they are immensely complicated when addressed, but because they look so simple from the outside and are generally under-appreciated. For example, building a disaster-response communication system is vastly more complex than just getting a unified frequency for different agencies to use to communicate with each other, because the words, meanings, contexts, values, and agendas all also have to be communicated and resolved, across space, across time, across a 14 level hierarchy from the national leader to the front-line responder.

The view of a scene from an infection-control specialist's viewpoint and from a military or police viewpoint may suggest exactly opposite actions regarding "rounding up people and concentrating them at the stadium." The ability of a CSC system to facilitate wise decisions and action in that sort of situation might require the type of action described by the Harvard Negotiation Project in the book "Getting to Yes", where "positions" have to be abstracted to "interests", perhaps repeatedly, until a level is reached at which agreement and a common ground can be found between groups that appear, on the surface, to be hopelessly deadlocked. It is an open research question as to what features of a CSC system could simply allow that type of discussion to occur, let alone facilitate it. Very high bandwidth and multiple "back-channel" communication pathways have often proven to be helpful. Apparently very simple things, such as sufficient magnification and resolution on video screens to be able to actually see another person's eyes clearly, can have a dramatic effect on the ability of a system to support trust-building and collaboration at a distance.

[edit] Requires protocols
Communication essential to the collaboration, or disruptive of it, is studied in CSC proper. It is somehow hard to find or draw a line between a well-defined process and general human communications.

Reflecting desired organization protocols and business processes and governance norms directly, so that regulated communication (the collaboration) can be told apart from free-form interactions, is important to collaboration research, if only to know where to stop the study of work and start the study of people. The subfield CMC or computer-mediated communication deals with human relationships.
Major applications
Applications that imply certain kinds of collaboration include:

· electronic meeting rooms or other live group support systems 

· desktop conferencing and videoconferencing systems, 

· large public wikis employing collaborative authorship 

· weblogs ("blogs") as small-group collaboration tools, along with e-mail, text-chat 

· SMS messaging, audio and video chat, audio and video "podcasting" 

· the "blogosphere" - weblogs as large-scale collaboration tools 

· web-broadcast syndication tools (RSS and Atom) 

· web-broadcast aggregation tools (automated notification, clipping services, filtering, weighting) 

Computer supported cooperative work

From Wikipedia, the free encyclopedia

  (Redirected from CSCW)

Jump to: navigation, search
The term computer supported cooperative work (CSCW) was first coined by Irene Greif and Paul M. Cashman in 1984, at a workshop attended by individuals interested in using technology to support people in their work[1]. At about this same time, in 1987 Dr. Charles Findley presented the concept of collaborative learning-work. According to[2], CSCW addresses "how collaborative activities and their coordination can be supported by means of computer systems." On the one hand, many authors consider that CSCW and groupware are synonyms. On the other hand, different authors claim that while groupware refers to real computer-based systems, CSCW focuses on the study of tools and techniques of groupware as well as their psychological, social, and organizational effects. The definition of [3] expresses the difference between these two concepts:

	“
	CSCW [is] a generic term, which combines the understanding of the way people work in groups with the enabling technologies of computer networking, and associated hardware, software, services and techniques.
	”


	· 


[image: image3.png]


[edit] Central concerns of CSCW
Computer Supported Cooperative Work (CSCW) is a design-oriented academic field bringing together social psychologists, sociologists, and computer scientists, among others. Despite the variety of disciplines, CSCW is an identifiable research field focused on understanding characteristics of interdependent group work with the objective of designing adequate computer-based technology to support such cooperative work.

Over the years, CSCW researchers have identified a number of core dimensions of cooperative work. A non-exhaustive list includes:

· Awareness: individuals working together need to be able to gain some level of shared knowledge about each other's activities[4]. 

· Articulation work: cooperating individuals must somehow be able to partition work into units, divide it amongst themselves and, after the work is performed, reintegrate it[5]

 HYPERLINK "http://en.wikipedia.org/wiki/CSCW" \l "cite_note-strauss85-5#cite_note-strauss85-5" \o "" [6]. 

· Appropriation (or tailorability): how an individual or group adapts a technology to their own particular situation; the technology may appropriated in a manner completely unintended by the designers[7]

 HYPERLINK "http://en.wikipedia.org/wiki/CSCW" \l "cite_note-dourish03-7#cite_note-dourish03-7" \o "" [8]

 HYPERLINK "http://en.wikipedia.org/wiki/CSCW" \l "cite_note-schmidt91-8#cite_note-schmidt91-8" \o "" [9]. 

These concepts have largely been derived through the analysis of systems designed by researchers in the CSCW community, or through studies of existing systems (for example, Wikipedia). CSCW researchers that design and build systems try to address core concepts in novel ways. However, the complexity of the domain makes it difficult to produce conclusive results; the success of CSCW systems are often so contingent on the peculiarities of the social context that it is hard to generalize. Consequently, CSCW systems that are based on the design of successful ones may fail to be appropriated in other seemingly similar contexts for a variety of reasons that are nearly impossible to identify a priori [10]. CSCW researcher Mark Ackerman calls this "divide between what we know we must support socially and what we can support technically" the socio-technical gap and describes CSCW's main research agenda to be "exploring, understanding, and hopefully ameliorating" this gap [11].

[edit] CSCW Matrix






the CSCW Matrix
One of the most common ways of conceptualizing CSCW systems is to consider the context of a system's use. One such conceptualization is the CSCW Matrix, first introduced in 1988 by Johansen; it also appears in [12]. The matrix considers work contexts along two dimensions: first, whether collaboration is co-located or geographically distributed, and second, whether individuals collaborate synchronously (same time) or asynchronously (not depending on others to be around at the same time).

A. Same time/same place
Face to face interaction

· Roomware 

· shared tables, wall displays 

· Digital whiteboards 

· Group Decision Support Systems (GDSS) 

· Single display groupware 

B. Same time/different place
Remote interaction

· Video-Conferencing, 

· Real-time groupware 

· Messaging (Instant messaging, Email, chat) 

C. Different time/same place
Continuous task

· Team rooms, 

· Large displays 

· Post-it 

D. Different time/different place
Communication + Coordination

· Wiki 

· Blogs 

· Workflow 

· Version Control 

The medium is the message

From Wikipedia, the free encyclopedia

  (Redirected from The Medium is the Message)

Jump to: navigation, search
Further information: Marshall McLuhan 

"The medium is the message" is a phrase coined by Marshall McLuhan meaning that the form of a medium embeds itself in the message, creating a symbiotic relationship by which the medium influences how the message is perceived. The phrase was introduced in his most widely known book, Understanding Media: The Extensions of Man, published in 1964.[1] McLuhan proposes that media themselves, not the content they carry, should be the focus of study; he said that a medium affects the society in which it plays a role not only by the content delivered over the medium, but by the characteristics of the medium itself.
Hence in Understanding Media, McLuhan describes the "content" of a medium as a juicy piece of meat carried by the burglar to distract the watchdog of the mind. [2] This means that people tend to focus on the obvious, which is the content, to provide us valuable information, but in the process, we largely miss the structural changes in our affairs that are introduced subtly, or over long periods of time.[3] As the society's values, norms and ways of doing things change because of the technology, it is then we realize the social implications of the medium. We sometimes call these effects "unintended consequences", although "unanticipated consequences" is more accurate. [3] The "unanticipated consequences" work silently to influence the way in which we interact with one another, and with our society at large.[3] These range from cultural or religious issues and historical precedents,through interplay with existing conditions, to the secondary or tertiary effects in a cascade of interactions [3] that we are not aware of.

More controversially, he postulated that specific content might have little effect on society — in other words, it did not matter if television broadcasts children's shows or violent programming, to give one example — the effect of television on society would be identical, and profound. He noted that all media have characteristics that engage the viewer in different ways; for instance, a passage in a book could be reread at will, but a movie had to be screened again in its entirety to study any individual part of it. So the medium through which a person encounters a particular piece of content would have an effect on the individual's understanding of it.

McLuhan also claimed in Understanding Media that different media invite different degrees of participation on the part of a person who chooses to consume a medium. Some media, like the movies, enhance one single sense, in this case vision, in such a manner that a person does not need to exert much effort in filling in the details of a movie image. McLuhan contrasted this with TV, which he claimed requires more effort on the part of viewer to determine meaning, and comics, which due to their minimal presentation of visual detail require a high degree of effort to fill in details that the cartoonist may have intended to portray. A movie is thus said by McLuhan to be "hot", intensifying one single sense "high definition", demanding a viewer's attention, and a comic book to be "cool" and "low definition", requiring much more conscious participation by the reader to extract value.[4] This concentration on the medium itself, and how it conveys information — rather than on the specific content of the information — is the focal point of "the medium is the message".

He pointed to the light bulb as a clear demonstration of the concept of “the medium is the message”. A light bulb does not have content in the way that a newspaper has articles or a television has programs, yet it is a medium that has a social effect; that is, a light bulb enables people to create spaces during nighttime that would otherwise be enveloped by darkness. He describes the light bulb as a medium without any content. McLuhan states that "a light bulb creates an environment by its mere presence."[5] Likewise, the message of a newscast about a heinous crime may be less the individual news story itself — the content — and more the change in public attitude towards crime that the newscast engenders by the fact that such crimes are in effect being brought into the home to watch over dinner.[3]
McLuhan frequently punned on the word "message" changing it to "mass age", "mess age", and "massage"; a later book, The Medium is the Massage by McLuhan and Quentin Fiore,[6] was originally to be titled The Medium is the Message, but McLuhan preferred the new title which is said to have been a printing error.

IBM Lotus Notes

From Wikipedia, the free encyclopedia

  (Redirected from Lotus notes)

Jump to: navigation, search
Features
The Notes client is mainly used as an email client, but also acts as an instant messaging client (for Lotus Sametime), browser, notebook, and calendar/resource reservation client, as well as a platform for interacting with collaborative applications.
In the early days of the product, the most common applications were threaded discussions and simple contact management databases. Today Notes also provides blogs, wikis, RSS aggregators, CRM and Help Desk systems, and organizations can build a variety of custom applications for Notes using Domino Designer.

The Notes client can be used as an IMAP and POP e-mail client with non-domino mail servers. Recipient addresses can be retrieved from any LDAP server, including Active Directory. The client also does web browsing although it can be configured to launch the default browser instead.

Features include group calendaring and scheduling, SMTP/MIME-based e-mail, NNTP-based news support, and automatic HTML conversion of all documents by the Domino HTTP task.

Notes' integration with IBM's Sametime instant messaging allows users to see other users online and conduct chat sessions with them. A chat session can be with one person or multiple people. Beginning with Release 6.5 this functionality is built into the Notes client and presence awareness is available in email and other Notes applications for users in organizations that use both Notes and Sametime.

Since version 7, Notes has provided a web services interface. Domino can be a web server for HTML files too; authentication of access to Domino databases or HTML files uses Domino's own user directory and external systems such as Microsoft's Active Directory.

A design client is available to allow rapid development of databases consisting of forms, which allow users to create documents; and views, which display selected document fields in columns.

In addition to being a groupware system (e-mail, calendaring, shared documents and discussions), Notes/Domino is also a platform for developing customized client-server and web applications. Its use of design constructs and code provide capabilities that facilitate the construction of "workflow" type applications (which may typically have complex approval processes and routing of data).

Since Release 5, Lotus server clustering has been capable of providing geographic redundancy for servers.

[edit] Data replication
The first release of Notes included a generalized replication facility. The generalized nature of this feature set it apart from predecessors like Usenet and continues to differentiate Notes from many other systems that now offer some form of synchronization or replication. The facility in Notes and Domino is not limited to email, calendar, and contacts. It works for any data in any application that uses NSF files, which are the standard container for data in the Notes architecture, for its storage. No special programming, tagging, or other configuration is required to enable replication.

Domino servers and Notes clients identify NSF files by their Replica IDs and keep files with matching IDs synchronized by bidirectionally exchanging data, metadata, and application logic and design. Replication between two servers, or between a client and a server, can occur over a network or a point-to-point modem connection. Replication between servers may occur at intervals according to a defined schedule, in near real-time when triggered by data changes in Domino server clusters, or on an ad-hoc basis when triggered by an administrator or programmatically.

Creation of a local replica of an NSF file on the hard disk of a Notes client enables the user of the client to take full advantage of Notes databases while working off-line — with the client synchronizing any changes when client and server next connect. Local replicas are also sometimes maintained for use while connected to the network in order to reduce network latency. Replication between a Notes client and Domino server can run automatically according to a schedule, or manually in response to a user or programmatic request. Local replicas on early releases of the Notes client did not always maintain all security features programmed into the applications, but starting with Notes 6 enforcement of application security is automatic for all local replicas. Early releases also did not offer a way to encrypt NSF files, raising concerns that local replicas potentially exposed too much confidential data on laptops or insecure home office computers,[citation needed] but an optional encryption feature for NSF files was added in more recent releases, and as of Notes 6 it is the default setting for newly created local replicas.

[edit] Security
Notes was the first widely adopted software product to use public key cryptography for client-server and server-server authentication and for encryption of data, and it remains the product with the largest installed base of PKI users.[citation needed][dubious – discuss] Until US laws regulating encryption were changed in 2000, Lotus was prohibited from exporting versions of Notes that supported symmetric encryption keys that were longer than 40 bits. In 1997, Lotus negotiated an agreement with the NSA that allowed export of a version that supported stronger keys with 64 bits, but 24 of the bits were encrypted with a special key and included in the message to provide a "workload reduction factor" for the NSA. The effect of this was that users of Notes outside of the US had stronger protection against private sector industrial espionage, but no additional protection against spying by the US government.[2] This implementation was not a secret - in fact it was widely announced - but with some justification many people did consider it to be a backdoor. Some governments objected to being put at a disadvantage to the NSA, and as a result Lotus continued to support the 40 bit version for export to those countries.

Under current US export laws, Lotus supports only one version of the Notes PKI with 128 bit symmetric keys, 1024 bit public keys, and no workload reduction factor. The Domino server's security tools also include S/MIME, SSL 3.0 support with industry standard key sizes for HTTP and other Internet protocols, X.509 client certificates, and an integrated certificate authority.

Lotus also employs a code-signature framework that controls the security context, runtime, and rights of custom code developed and introduced into the environment. With Release 5, Lotus introduced Execution Control Lists at the Client level - starting with 6, ECL's can be managed centrally by server administrators through the implementation of Policies. Since release 4.5 the code signatures listed in properly configured ECLs entirely prevent code execution by external malicious sources, and therefore virus propagation, through native Notes/Domino environments. Administrators can centrally control whether each mailbox user can add exceptions to, and thus override, the ECL.

[edit] Programming
Notes/Domino is a cross-platform, secure, distributed document-oriented database and messaging framework and rapid application development environment that includes pre-built applications like email, calendar, etc. This sets it apart from its major commercial competitors, such as Microsoft Exchange or Novell GroupWise, which are generally purpose-built applications for mail and calendaring that offer APIs for extensibility.

Lotus Domino databases are built using the Domino Designer client, available only for Windows; while standard user clients are available for Windows, Linux, and Mac[3]. A key feature of Notes is that many replicas of the same database can exist at the same time on different servers and clients, across dissimilar platforms, and the same storage architecture is used for both client and server replicas. Originally, replication in Notes happened at document (i.e. record) level. With release of Notes 4 in 1996, replication was changed so that it now occurs at field level.

A database is an NSF (Notes Storage Facility) file, containing basic units of storage known as a "note". Every note has a UniqueID and a NoteID. The UniqueID uniquely identifies the note across all replicas within a cluster of servers, a domain of servers, or even across domains belonging to many organizations that are all hosting replicas of the same database. The NoteID, on the other hand, is unique to the note only within the context of one given replica. Each note also stores its creation and modification dates, and one or more Items.

There are several classes of notes, including design notes and document notes. Design notes, which are created and modified with the Domino Designer client, represent programmable elements, such as the GUI layout of forms for displaying and editing data, or formulas and scripts for manipulating data. Document notes, which are created and modified with the Lotus Notes client, via a web browser, via mail routing and delivery, or via programmed code, represent user data.

Document notes can have parent-child relationships, but Notes should not be considered a hierarchical database in the classic sense of IMS. Notes databases are also not relational, although there is a SQL driver that can be used with Notes, and it does have some features that can be used to develop applications that mimic relational features. There is no support for atomic transactions in Notes, and its file locking is rudimentary at best. Notes is a Document-oriented database (document-based, schemaless, loosely structured) with support for rich content and powerful indexing facilities. This structure closely mimics paper-based workflows that Lotus Notes is typically used to automate.

Items represent the content of a note. Every item has a name, a type, and may optionally have some flags set. A note can have more than one item with the same name. Types include Number, Number List, Text, Text List, Date-Time, Date-Time List, and Rich Text. Flags are used for managing attributes associated with the item, such as read or write security. Items in design notes represent the programmed elements of a database. For example, the layout of an entry form is stored in the rich text Body item within a form design note. This means that the design of the database can replicate to users' desktops just like the data itself, making it extremely easy to deploy updated applications.

Items in document notes represent user-entered or computed data. An item named "Form" in a document note can be used to bind a document to a form design note, which directs the Lotus Notes client to merge the content of the document note items with the GUI information and code represented in the given form design note for display and editing purposes. The resulting loose binding of documents to design information is one of the cornerstones of the power of Lotus Notes. Traditional database developers used to working with rigidly enforced schemas, on the other hand, may consider the power of this feature to be a double-edged sword.

Notes applications development uses several programming languages. Formula and LotusScript are the two main ones. LotusScript is similar to, and may even be considered a specialized implementation of, Visual Basic, but with the addition of many powerful native classes that model the Notes environment, whereas Formula is unique to Notes but similar to Lotus 1-2-3 formula language.

Since Release 5, Java and JavaScript are also integrated into Lotus Notes. LotusScript is the primary tool in developing applications for the Notes client, as well as server-based processing. Java and JavaScript are the primary tools for developing applications for browser access, allowing browsers to emulate the functionality of the Notes client. The Notes client can now natively process Java and JavaScript code, although applications development usually requires at least some code specific to only Notes or only a browser. However, the Mac client does not support Java and the Windows client usually does not support the most recent version of Java.

As of version 6, Lotus established an XML programming interface in addition to the options already available. The Domino XML Language (DXL) provides XML representations of all data and design resources in the Notes model, allowing any XML processing tool to create and modify Notes/Domino data.

External to the Lotus Notes application, IBM provides toolkits in C, C++, and Java to connect to the Domino database and perform a wide variety of tasks. The C toolkit is the most mature and the C++ toolkit is an objectized version of the C toolkit, lacking many functions the C toolkit provides. The Java toolkit is the least mature of the three and can be used for basic application needs.

[edit] Database
Notes includes a DBMS but Notes files are different from relational or object databases since they are document centric. Document-oriented databases such as Notes allow multiple values in items (fields), don't require a schema, come with built-in document-level access control and store RichText data. There are some Object-Relational features being developed and Domino 7 supported a restricted release add-on allowing the use of IBM's DB2 database as an alternative store for Notes databases. With Domino 8 this is available without a special request. You can map a Notes database to a relational database using tools like DECS, [LEI], JDBCSql for Domino or NotesSQL.

It could be argued that Notes is a multi-value database system like PICK, or that it's an object system like Zope, but it is in fact unique. Whereas the temptation for relational database programmers is to normalize databases, Notes databases must be denormalized. RDBMS developers often find it difficult to conceptualize the difference. It may be useful to think of a Notes document (a 'note') as analogous to an XML document natively stored in a database (although with limitations on the data types and structures available).

The benefits of this data structure are:

1. No need to define size of fields, or datatype; 

2. Attributes (Notes fields) that are null take up no space in a database; 

3. Built-in full text searching. 

[edit] Use as an email client
Lotus Notes is commonly deployed as an end-user email client in larger organizations, with IBM claiming a cumulative 140 million licenses sold to date. (IBM does not release the number of licenses on current maintenance, nor does it track number of licenses in current use.)

When an organization employs a Lotus Domino server, it usually also deploys Lotus Notes for its users to read mail and use databases. However, the Domino server also supports POP3 and IMAP mail clients, and through an extension product (Domino Access for Microsoft Outlook) supports native access for Microsoft Outlook clients. Lotus also provides Domino Web Access, to allow the use of email and calendaring features through Internet Explorer and Firefox web browsers on Windows, Mac and Linux. There are several spam filtering programs available, and a rules engine allowing user-defined mail processing to be performed by the server.

[edit] How Notes differs from other email clients
Lotus Notes was designed to be a collaborative application platform where email was just one of numerous applications that ran in the Notes client software. Lotus lore has it that the first mail inbox application written by Lotus was a proof-of-concept for a sales presentation. The Notes client was also designed to run on multiple platforms including Windows, OS/2, Mac, SCO Open Desktop UNIX, and Linux. These two factors have resulted in the user interface containing some differences from applications that only run on Windows. Furthermore these differences have often remained in the product to retain backward compatibility with earlier releases, instead of conforming to Windows UI standards. The following are some of these differences.

· Properties dialog boxes for formatting text, hyperlinks and other rich-text information can remain open after changes are made to the selected text. This provides great flexibility to select new text and apply other formatting without closing the dialog box, selecting new text and opening a new format dialog box. Almost all other Windows applications require the user to close the dialog box, select new text, then open a new dialog box for formatting/changes. 

· Properties dialog boxes also automatically recognize the type of text selected and display the appropriate selections, for instance, a hyperlink properties box when appropriate. 

· Tables can be formatted as tabbed interfaces as part of form design (for applications) or by users within mail messages (or in rich-text fields in applications). This provides users the ability to provide tab-style organization to documents, similar to popular tab navigation in most web portals, etc. 

· Links to Notes applications, views or documents can be easily inserted into Notes documents. 

· The nearly instantaneous full-text searching was available in Notes before other email applications, including Outlook. 

· Deleting a document (or email) will delete it from every folder in which it appears, since the folders simply contain links to the same back-end document. Some other email clients only delete the email from the current folder; if the email appears in other folders it is left alone, requiring the user to hunt through multiple folders in order to completely delete a message. In Notes, clicking on "Remove from Folder" will remove the document only from that folder leaving all other instances intact. 

· The All Documents and Sent "views" differ from other collections of documents known as "folders", so exhibit they different behaviors. Namely, mail cannot be dragged out of them, and so removed from those views; the email can only be "copied" from them. This is because these are views, and their membership indexes are maintained according to characteristics of the documents contained in them, rather than based on user actions interaction as is the case for a folder). This technical difference can be baffling to users, in environments where no training is given. All Documents contain all of the documents in a mailbox, no matter which folder it is in. The only way to remove something from All Documents is to delete it outright. A sent email message cannot be removed from the Sent view, since that would imply that a message that used to be sent was no longer ever sent, which would be absurd. 

Lotus Notes 7 and older versions had more differences:

· Users select a "New Memo" to send an email, rather than "New Mail" or "New Message." (In Notes 8, the command is called "New Message") 

· To select multiple documents in a Notes view, you drag your mouse next to the documents that you want to select, rather than using ⇧ Shift+single click. (Notes 8 uses standard conventions.) 

· The searching function is a "phrase search", rather than the more common "or search", and Notes requires users to spell out boolean conditions in search string. As a result, users must search for ‘delete AND folder’ in order to find help text that contains the phrase ‘delete a folder’. Searching for ‘delete folder’ does not yield the desired result. (Notes 8 uses standard conventions.) 

Like all popular commercial software packages, Lotus Notes has had its detractors as well as supporters. Critics assert that there are dedicated email clients that are simpler, more intuitive and have a lower purchase price. Proponents argue that richer capabilities and advanced programmability are available, and that purchase price is a small fraction of total cost of ownership. Also that its bomb-proof security against viruses and trojans is not matched in any other email system.[citation needed] Many of the differences mentioned above are seen by some as weaknesses in the product, especially when the user interface is compared more specialized applications.

Later releases of the product have made great headway in addressing end-user complaints.[citation needed]
Notes 8.0 (released in 2007) was the first version that employed a full user-experience team Mary Beth Raven Blog, resulting in a greatly improved Notes client experience. Additionally, Notes 8.0 now runs in the open source Eclipse Framework, opening up nearly unlimited application development opportunities through the use of Eclipse plug-ins. The improved user experience builds on Notes 6.5 (released in 2003), which upgraded the e-mail client, previously regarded as the product's Achilles heel. Features added at that time included:

· drag and drop of folders 

· replication of unread marks between servers 

· follow-up flags 

· reply and forward indicators on emails 

· ability to edit an attachment and save the changes back to an e-mail 

[edit] Criticisms
Criticisms of the product include:

· Many end users, particularly those mainly using it for emailing, have complained that aspects of the graphical user interface are unintuitive.[4] [5] Some of the more common criticisms of older versions have been addressed in more recent versions. 

· Some end users also complain about the excessive number of mouse clicks needed to perform basic functions, and the poor design of keyboard alternatives.[citation needed] 

· Prior to Release 8.0, the out-of-office feature was designed to limit traffic by sending out-of-office messages at 2 am (by default) instead of immediately after messages are received, giving the initial impression that it did not work at all. Recent releases have increased the frequency of out-of-office messages to once every few hours. As of Release 8.0, administrators can configure the system to send out-of-office messages immediately. 

· Setting up archiving for the first time was complex, and often did not create an archive file straight away (the file is created when the first email is archived). This may have led some users to believe it did not work.[citation needed] 

· Some users get confused between the "Starts with" search and the full text search features offered in the Notes UI, the former of which will only search on data that is visible in the currently sorted column of the visible folder. The product's defenders point out that the optional full text search feature has provided superior searching in Notes since the early 1990s, whereas rival Microsoft Outlook only provided that feature starting with the 2007 version, relying on third-party external plug-ins to provide similar functionality before that. 

· It is difficult to read your Notes email from a standalone NSF file with any other software. The defenders point out that the same is true with some other systems as well. For example, you need the Outlook client to read PST files. However, this is also a security feature in that Notes NSF data files can only be read by an authenticated user, and the model also allows for high-level encryption of data files, accessible only to those authorised, using appropriately certificated clients or working on certain domains. 

· It is hard to get the regular email address of someone that has sent an email to you if this person is from your Organization (in the Notes directory), because Notes does not display email addresses, but rather specific Notes addresses like "Mike Smith/San Jose/ABC Company". The defenders point out that you can look that up in the company wide name and address book which is a part of any Notes installation, and that you normally don't need to know the external address of an internal person. 

· A loss of network connection while Lotus Notes is running will sometimes cause Notes to pop up multiple dialog boxes displaying the same generic "Server not responding" error message. On the other hand, because of the 'replication' architecture inherent to the Notes/Domino model, it is possible to work effectively and quite independently of a network connection on a 'replica' database which will catch up with the server when next connected. 

· Not very descriptive error messages like "file not found" or no error messages at all. 

· Although the program allows users to open multiple tabs to operate on different databases, views and documents simultaneously, some operations that can take a long time are executed in foreground, preventing users from being able to switch to other tabs to continue working on other tasks. 

· When Notes terminates unexpectedly on Microsoft Windows, it can leave some resources loaded and/or locked, making it impossible to restart Notes without rebooting the system or running one of several available utilities to free the resources. ZapNotes will remove all Notes-related resources and automatically restart the client when a crash occurs. A nice alternative to installing a special program to cleanup hanging Notes processes is to use Start > Logoff. This stops all processes running under the current user's profile. Logging back in allows a clean restart of the application (this is a good tip for many hanging Windows applications.) 

· Lotus Notes suffers from almost a complete lack of CSS support. In fact, Lotus Notes is second only to Eudora in lack of CSS support, complicating the creation display of cross-browser HTML email.[6] 

[edit] History
Lotus Notes has a history spanning more than 20 years.[7] Its chief inspiration was PLATO Notes, created by David Woolley at the University of Illinois in 1973. In today's terminology, PLATO Notes was a message board, and it was the basis for an online community which thrived for more than 20 years on the PLATO system. Ray Ozzie worked with PLATO while attending the University of Illinois in the 1970s. When PC network technology began to emerge, Ozzie made a deal with Mitch Kapor, the founder of Lotus Development Corporation, that resulted in the formation of Iris Associates in 1984 to develop products that would combine the capabilities of PCs with the collaborative tools pioneered in PLATO. The agreement put control of product development under Ozzie and Iris, and sales and marketing under Lotus. In 1994, after the release and marketplace success of Notes R3, Lotus purchased Iris. In 1995 IBM purchased Lotus.

When Lotus Notes was initially released, the name "Notes" referred to both the client and server components. In 1996, Lotus released an HTTP server add-on for the Notes 4 server called "Domino". This add-on allowed Notes documents to be rendered as web pages in real time. Later that year, the Domino web server was integrated into release 4.5 of the core Notes server and the entire server program was re-branded, taking on the name "Domino". Only the client program officially retained the "Lotus Notes" name, however end users are generally unaware of this differentiation, so even though more than ten years has passed since the re-branding, references to the "Lotus Notes Server" are still fairly common.

